PERFORMANCE-BASED OPTIMIZATION AND SEISMIC COLLAPSE SAFETY ASSESSMENT OF STEEL MOMENT FRAMES

Authors

  • C. Gheyratmand
  • M. Danesh
  • S. Gholizadeh
Abstract:

The main aim of the present study is to optimize steel moment frames in the framework of performance-based design and to assess the seismic collapse capacity of the optimal structures. In the first phase of this study, four well-known metaheuristic algorithms are employed to achieve the optimization task. In the second phase, the seismic collapse safety of the obtained optimal designs is evaluated by conducting incremental dynamic analysis and generating fragility curves. Three illustrative examples including 3-, 6-, and 12-story steel moment frames are presented. The numerical results demonstrate that all the performance-based optimal designs obtained by the metahuristic algorithms are of acceptable collapse margin ratio.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

PERFORMANCE BASED DESIGN OPTIMIZATION OF STEEL MOMENT RESISTING FRAMES INCORPORATING SEISMIC DEMAND AND CONNECTION PARAMETERS UNCERTAINTIES

One of the most important problems discussed recently in structural engineering is the structural reliability analysis considering uncertainties. To have an efficient optimization process for designing a safe structure, firstly it is required to study the effects of uncertainties on the seismic performance of structure and then incorporate these effects on the optimization process. In this stud...

full text

PERFORMANCE-BASED DESIGN OPTIMIZATION OF STEEL MOMENT FRAMES

This study deals with performance-based design optimization (PBDO) of steel moment frames employing four different metaheuristics consisting of genetic algorithm (GA), ant colony optimization (ACO), harmony search (HS), and particle swarm optimization (PSO). In order to evaluate the seismic capacity of the structures, nonlinear pushover analysis is conducted (PBDO). This method is an iterative ...

full text

assessment of the park- ang damage index for performance levels of rc moment resisting frames

چکیده هدف اصلی از طراحی لرزه ای تامین ایمنی جانی در هنگام وقوع زلزله و تعمیر پذیر بودن سازه خسارت دیده، پس از وقوع زلزله است. تجربه زلزله های اخیر نشان داده است که ساختمان های طراحی شده با آیین نامه های مبتنی بر نیرو از نظر محدود نمودن خسارت وارده بر سازه دقت لازم را ندارند. این امر سبب پیدایش نسل جدید آیین نامه های مبتنی بر عملکرد شده است. در این آیین نامه ها بر اساس تغییرشکل های غیرارتجاعی ...

15 صفحه اول

ERFORMANCE-BASED SEISMIC DESIGN OPTIMIZATION OF COMPOSITE MOMENT RESISTING FRAMES WITH CONCERETFILLED STEEL COLUMNS AND STEEL BEAMS

In this paper, an optimization framework is developed for performance-based seismic design of composite moment frames consisting of concrete filled steel box columns and I-shaped steel beams. Material cost of the structure and seismic damage under severe earthquake ground motions are minimized as objective functions. Two design examples are presented to demonstrate the applicability and efficie...

full text

SEISMIC TOPOLOGY OPTIMIZATION AND COLLAPSE SAFETY ANALYSIS OF CHEVRON BRACED FRAMES

This study is devoted to seismic collapse safety analysis of performance based optimally seismic designed steel chevron braced frame structures. An efficient meta-heuristic algorithm namely, center of mass optimization is utilized to achieve the seismic optimization process. The seismic collapse performance of the optimally designed steel chevron braced frames is assessed by performing incremen...

full text

SEISMIC OPTIMIZATION OF STEEL MOMENT RESISTING FRAMES CONSIDERING SOIL-STRUCTURE INTERACTION

The main purpose of the present work is to investigate the impact of soil-structure interaction on performance-based design optimization of steel moment resisting frame (MRF) structures. To this end, the seismic performance of optimally designed MRFs with rigid supports is compared with that of the optimal designs with a flexible base in the context of performance-based design. Two efficient me...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 3

pages  483- 498

publication date 2019-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023